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Abstract
We consider multiple lattices and functions defined on them. We introduce
slow varying conditions for functions defined on the lattice and express the
variation of a function in terms of an asymptotic expansion with respect to the
slow varying lattices. We use these results to perform multiple-scale reduction
of the lattice potential Korteweg–de Vries equation.
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Mathematics Subject Classification: 34E13, 39A, 37K40, 35Q53, 35Q55

1. Introduction

The reductive perturbation method (or multiple-scale analysis) [18] allows us to deduce a
set of simplified equations starting from a basic model without losing its main characteristic
features. The method consists essentially of an asymptotic analysis of a perturbation series,
based on the existence of different scales to cure secularity.

The success of the method relies mainly on the nice property of the resulting reduced
models, which are simple and often integrable. Simple here means actually simpler than the
starting equations and still providing useful information. Integrable means that they carry an
infinite set of conserved quantities, have an infinite set of symmetries and of exact solutions.
Finally, as emphasized in [2], the reductive perturbation approach preserves integrability.
Consequently, this approach can be used to obtain new integrable models from known ones.

The situation is quite different in the case of differential equations on a lattice (for
example, in the case of dynamical systems when one has a continuous time and discrete space
variables) for which a reliable reductive perturbative method, which would produce reduced
discrete systems up to our knowledge, does not exist. Leon and Manna [11] and later Levi
and Heredero [12] proposed a set of tools which allow us to perform multiple-scale analysis
for a discrete evolution equation. These tools rely on the definition of a large grid scale via
the comparison of the magnitude of related difference operators and on the introduction of a
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slow varying condition for functions defined on the lattice. Their results, however, are not
very promising as the reduced models are neither simpler nor more integrable than the original
one. Starting from an integrable model, such as the Toda lattice [19], the Leon and Manna
reduction technique produces a non-integrable differential–difference equation of the discrete
nonlinear Schrödinger type [13, 17]. Levi and Heredero [12] started from the integrable
differential–difference nonlinear Schrödinger equation and got a non-integrable system of
differential–difference equations of Kortewg–de Vries type.

We consider here the case of completely discrete equations defined on a two-dimensional
orthogonal lattice. We follow the approach introduced by Levi and Heredero [12], extended
to the case of multiple orthogonal lattices. We try to keep all passages consistent with the
continuous limit, when the lattice spacings on the different grids go to zero.

In section 2 we introduce, following [12], the multiple lattices, the slow varying conditions
and the asymptotic expansions of the functions’ variations while in section 3, we apply the
resulting formulae to the case of the multiple-scale expansion of the lattice potential Korteweg–
de Vries equation (lpKdV) [14, 8],

(p − q + un,m+1 − un+1,m)(p + q − un+1,m+1 + un,m) = p2 − q2. (1)

Finally, in section 4 we discuss the results obtained and present a list of open problems and
remarks relevant also for the case of a differential–difference equation [12].

2. Multi-lattice structures and the variation of a function on them

2.1. Rescaling on the lattice

Given a lattice defined by a constant lattice spacing h, we will introduce an a priori infinite
number of lattices defined by lattice spacings Hj , with j = 1, 2, . . . ,∞, where Hj are well-
defined functions of h,Hj = Hj(h). In figure 1 we show an example of such a situation with
j = 1, 2. For convenience we will denote by nj the running index of the points separated by
Hj and n those separated by h. Moreover, in correspondence with the lattice variables, we can
introduce the real variables x = hn and xj = Hjnj .

A simple definition of Hj is obtained by introducing an integer number N and defining
Hj = Njh. If N is a large number then 1

N
= ε will be a small number. The variables

x and xj will go over to continuous variables when, respectively, h → 0, n → ∞ and
Hj → 0, nj → ∞ in such a way that their products x = nh and xj = njHj are finite.

Let us assume that xj = εjx. Then, if x ∼ 1
εj , xj ∼ 1. So xj represents, as j increases,

an always larger portion of the x axis. This assumption, together with the choice ε = 1
N

, will
reflect onto a relation between the lattice variables n and nj as

xj = Hjnj = hNjnj = εjx = 1

Nj
hn ⇒ nj =

[ n

N2j

]
. (2)

Consequently, we need to move N2j points on the lattice of the discrete variable n to shift the
lattice variable nj by 1 point.

2.2. Slowly varying functions and their expansion

Here we study the relation between functions acting on the different lattices defined in
section 2.1.

Let us consider a function f defined on the points of a lattice of index n given in
figure 1, i.e. f (n). We are interested in understanding what happens when we assume that
f (n) = g(n1, n2, . . . , nK), i.e. f depends on a finite number K of slow varying lattice
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Figure 1. Multiple lattices (n, n1 = n
N

, n2 = n

N2 ), with N = 5; the corresponding continuous

coordinate would be x = nh, x1 = n1H1 and x2 = n2H2, where H1 = hN, H2 = hN2.

variables nj such that g(nj ± k) = f (n± kN2j ) (2). As we are mainly interested in applying,
in section 3, these results to the lpKdV (1), we need to know what happens to the function g

when the function f is in the point n + 1. One needs to get explicit expressions for f (n + 1) in
terms of g(n1, n2, . . . , nK) on different points in the n1, n2, . . . , nk lattices. First, let us study
the case considered in [12] when we have only two different lattices, i.e. K = 1. Using the
results obtained in this case, we will consider the case corresponding to K = 2. The generic
case will then be obvious.

In the case of one variable we can use the result contained in [10]:

�k
Hg(n1) =

∞∑
i=k

k!

i!
P(i, k)�i

hf (n), (3)

where H is any one of the possible Hj introduced previously and �k
Hg(n1) =∑k

i=0(−1)k−i
(
k

i

)
g(n1 + i), the k-variation formula obtained using a two–points forward

difference scheme. The coefficients P(i, k) are given by

P(i, j) =
i∑

α=j

(
H

h

)α

Sα
i Sj

α

with S
j

i ,S
j

i being Stirling numbers of the first and second kinds, respectively. A table with
the coefficients P(i, k) for (i, k) < (6, 6) is contained in [10].

Equation (3) allows us to express a difference of order k in the lattice of spacing H in
terms of an infinite number of differences on the lattice of spacing h. To get an approximate
solution we have to truncate the expansion on the rhs of equation (3) by requiring a slow
varying condition for the function f (n). We will say that the function f (n) is a slow varying
function of order p if �

p+1
h f (n) = 0. A slow varying function of order p is a polynomial of

degree p in n [5]. For a function of order p = 1, equation (3) reduces to

�Hg(n1) = N2�hf (n). (4)

Dividing equation (4) by h and taking the limit as h → 0, with x = hn and x1 = n1H1 = n1hN

finite, we get df (x)

dx
= ε

dg(x1)

dx1
. In the case p = 2, we get

�2
Hg(n1) = N4�2

hf (n), (5)

�Hg(n1) = N2�hf (n) +
N2(N2 − 1)

2
�2

hf (n). (6)
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For p = 3 we have

�3
H g(n1) = N6�3

hf (n),

�2
H g(n1) = N4�2

hf (n) + N4(N2 − 1)�3
hf (n),

�H g(n1) = N2�hf (n) +
N2(N2 − 1)

2
�2

hf (n) +
N2(N2 − 1)(N2 − 2)

6
�3

hf (n),

and for p = 4 we have

�4
H g(n1) = N8�4

hf (n),

�3
H g(n1) = N6�2

hf (n) +
3N6(N2 − 1)

2
�4

hf (n),

�2
H g(n1) = N4�2

hf (n) + N4(N2 − 1)�3
hf (n) (7)

+

[
7

12
N6(N2 − 1) − 11

12
N4(N2 − 1)

]
�4

hf (n),

�H g(n1) = N2�hf (n) +
1

2!
N2(N2 − 1)�2

hf (n)

+
1

3!
N2(N2 − 1)(N2 − 2)�3

hf (n) +
1

4!
N2(N2 − 1)(N2 − 2)(N2 − 3)�4

hf (n).

From (4), if f (n) is a slow function of order 1, f (n + 1) reads

f (n + 1) = g(n1) +
1

N2
[g(n1 + 1) − g(n1)] + o

(
1

N4

)
, (8)

while, if the function f (n) is a slow varying function of order 2, f (n + 1) is given by

f (n + 1) = g(n1) +
1

2N2
[−g(n1 + 2) + 4g(n1 + 1) − 3g(n1)]

+
1

2N4
[g(n1 + 2) − 2g(n1 + 1) + g(n1)] + o

(
1

N6

)
. (9)

When the function f (n) is a slow varying function of order 3, f (n + 1) is given by

f (n + 1) = g(n1) +
1

6N2
[2g(n1 + 3) − 9g(n1 + 2) + 13g(n1 + 1) − 6g(n1)]

+
1

2N4
[−g(n1 + 3) + 4g(n1 + 2) − 5g(n1 + 1) + 2g(n1)]

+
1

6N6
[g(n1 + 3) − 3g(n1 + 2) + 3g(n1 + 1) − g(n1)] + o

(
1

N8

)
, (10)

and, when the function f (n) is a slow varying function of order 4

f (n + 1) = g(n1) +
1

12N2
[−3g(n1 + 4) + 16g(n1 + 3)

− 36g(n1 + 2) + 48g(n1 + 1) − 25g(n1)] +
1

24N4
[11g(n1 + 4) − 56g(n1 + 3)

+ 114g(n1 + 2) − 104g(n1 + 1) + 35g(n1)] +
1

12N6
[−3g(n1 + 4) + 14g(n1 + 3)

− 24g(n1 + 2) + 18g(n1 + 1) − 5g(n1)] +
1

24N8
[g(n1 + 4) − 4g(n1 + 3)

+ 6g(n1 + 2) − 4g(n1 + 1) + g(n1)] + o

(
1

N10

)
. (11)
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In section 3 we consider the reduction of an integrable discrete equation and will be
interested in obtaining from it integrable discrete equations. It is known [20] that a scalar
differential–difference equation can possess higher conservation laws and thus be integrable
only if it depends symmetrically on the discrete variable, i.e. if the discrete equation is
invariant with respect to the inversion of n. So we will choose asymptotic discrete formulae
which contain both f (n ± 1). The results contained in equation (3) do not provide us with
centralized formulae. To get symmetric formulae, we need to take into account the following
observations:

(1) Equation (3) is valid also if H and h are both negative;
(2) For a slow varying function of order p,�

p

hf (n) = �
p

hf (n + l) for any integer number l.

Using these observations, from equation (8) we get

f (n − 1) = g(n1) +
1

N2
[g(n1 − 1) − g(n1)] + o

(
1

N4

)
, (12)

and in place of equation (9) we have

f (n + 1) = g(n1) +
1

2N2
[g(n1 + 1) − g(n1 − 1)]

+
1

2N4
[g(n1 + 1) − 2g(n1) + g(n1 − 1)] + o

(
1

N6

)
, (13)

when the function f (n) is a slow varying function of order 2. To get equation (13) we have to
write, using observation 2, equations (5), (6) in the form

�2
Hg(n1) = N4�̃2

hf (n), (14)

�Hg(n1) = N2�hf (n) +
N2(N2 − 1)

2
�̃2

hf (n), (15)

where by the symbol �̃ we mean the centralized version of the difference operator. In the case
of equations (14), (15) �̃2

hf (n) = f (n + 1) − 2f (n) + f (n − 1).
When f (n) is a slow varying function of odd order we are not able to construct completely

symmetric derivatives using just two-points forward difference formulae and thus f (n + 1)

and f (n − 1) will never be expressed in a symmetric form (see for example equations (8),
(12)). In the case, when the function f (n) is a slow varying function of order 4, we have to
rewrite formulae (7) using both observations introduced before. We have

�̃4
H g(n1) = N8�̃4

hf (n),

�̃2
H g(n1) = N4�̃2

hf (n) +
N4(N4 − 1)

12
�̃4

hf (n),

�2
H g(n1) = N4�2

hf (n) + N4(N2 − 1)�̂3
hf (n)

+

[
7

12
N6(N2 − 1) − 11

12
N4(N2 − 1)

]
�̃4

hf (n), (16)

�H g(n1) = N2�hf (n) +
1

3!
N2(N2 − 1)(N2 − 2)�̂3

hf (n)

+
1

2!
N2(N2 − 1)�2

hf (n) +
1

4!
N2(N2 − 1)(N2 − 2)(N2 − 3)�̃4

hf (n),

where using observation 2, we have written �3
hf (n) as �̂3

hf (n) = 2f (n + 2) − 7f (n + 1) +
9f (n) − 5f (n − 1) + f (n − 2). Inverting formulae (16) we have
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f (n + 1) = g(n1) − 1

12N2
[g(n1 + 2) − 8g(n1 + 1) + 8g(n1 − 1) − g(n1 − 2)]

− 1

24N4
[g(n1 + 2) − 16g(n1 + 1) + 30g(n1) − 16g(n1 − 1) + g(n1 − 2)]

+
1

12N6
[g(n1 + 2) − 2g(n1 + 1) + 2g(n1 − 1) − g(n1 − 2)] +

1

24N8
[g(n1 + 2)

− 4g(n1 + 1) + 6g(n1) − 4g(n1 − 1) + g(n1 − 2)] + o

(
1

N10

)
. (17)

Let us move now to the case of functions of multiple variables, i.e. when g =
g(n1, n2, . . . , nK). If n1, n2, . . ., nK were completely independent discrete variables then
any operation on one of the variables would not reflect on the other. If, however, we have
f (n) = g(n1, n2, . . . , nK) and nj = n

N2j , then any shift of n will reflect on all variables
n1, n2, . . ., nK . We will consider later the case when the multiple variables are independent,
i.e. the partial difference case.

Let us consider here in all details the case of K = 2, which is the case we will need in
section 3. f (n) = g(n1, n2) and we are looking for a representation of f (n + 1) in terms of
g(n1, n2) and its shifted values. The resulting formulae will depend in a crucial way on the
slow varying order of the function f (n) with respect to n1 and n2. If the variation of both
variables has to appear in the expansion of f (n + 1) then the slow varying order with respect
to n1 must be greater than that of n2. f (n) cannot be a slow varying function of order 1 in
n1 as in this case f (n + 1) will have no variation in n2. If f (n) is a slow varying function of
order 2 in n1 then it can be either of order 1 or 2 in n2. In both cases the obtained formula will
be valid up to order 1

N4 , but in the first case the obtained expression will not be symmetric in
n2. When f (n) is a slow varying function of order 2 in n1 and of order 1 in n2, taking into
account equations (15), (4) and the observation given before, we have

g(n1 + 1, n2) = g(n1, n2) + N2[f (n + 1, n2) − f (n, n2)]

+
N2(N2 − 1)

2
[f (n + 1, n2) − 2f (n, n2) + f (n − 1, n2)], (18a)

g(n1 − 1, n2) = g(n1, n2) − N2[f (n + 1, n2) − f (n, n2)]

+
N2(N2 − 1)

2
[f (n + 1, n2) − 2f (n, n2) + f (n − 1, n2)], (18b)

g(n1, n2 + 1) = g(n1, n2) + N4[f (n1, n + 1) − f (n1, n)], (18c)

g(n1 + 1, n2 + 1) = g(n1, n2 + 1) + N2[f (n + 1, n2 + 1) − f (n1, n2 + 1)]

+
N2(N2 − 1)

2
[f (n + 1, n2 + 1) − 2f (n1, n2 + 1) + f (n − 1, n2 + 1)], (18d)

g(n1 − 1, n2 + 1) = g(n1, n2 + 1) − N2[f (n + 1, n2 + 1) − f (n1, n2 + 1)]

+
N2(N2 − 1)

2
[f (n + 1, n2 + 1) − 2f (n1, n2 + 1) + f (n − 1, n2 + 1)], (18e)

where we took into account that on the unshifted point n = n1 = n2, f (n) = f (n, n2) =
f (n1, n) = f (n, n) = g(n1, n2) and that f (n+1, n2+1), which is appearing in equations (18d)
and (18e), is obtained from g(n1, n2 + 1), given by equation (18c), by substituting n1 by n + 1.
In such a way, the five variables on the lhs of equations (18) are expressed in terms of the
six variables f (n), f (n + 1) = f (n + 1, n + 1), f (n1, n + 1) = f (n, n + 1), f (n ± 1, n2) =
f (n ± 1, n), f (n − 1, n + 1) appearing on the rhs of equations (18). Let us note that to
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get a coherent number of equations with respect to the unknowns, we had to also consider
equations (18b) and (18e) which involve n1 − 1. We can invert the system (18) and get

f (n + 1) = g(n1, n2) +
1

2N2
[g(n1 + 1, n2) − g(n1 − 1, n2)]

+
1

N4
[g(n1, n2 + 1) − g(n1, n2)]

+
1

2N4
{[g(n1 − 1, n2) − 2g(n1, n2) + g(n1 + 1, n2)]} + o

(
1

N6

)
. (19)

In the continuous limit, when n → ∞ and h → 0 in such a way that nh → x, equation (19)
will give

f,x(x) = εg,x1(x1, x2) + ε2g,x2(x1, x2). (20)

When f (n) is a slow varying function of second order in both variables, in place of
equation (18) we have

g(n1 + 1, n2) = g(n1, n2) + N2[f (n + 1, n2) − f (n, n2)]

+
N2(N2 − 1)

2
[f (n + 1, n2) − 2f (n, n2) + f (n − 1, n2)], (21a)

g(n1 − 1, n2) = g(n1, n2) − N2[f (n + 1, n2) − f (n, n2)]

+
N2(N2 − 1)

2
[f (n + 1, n2) − 2f (n, n2) + f (n − 1, n2)], (21b)

g(n1, n2 + 1) = g(n1, n2) + N4[f (n1, n + 1) − f (n1, n)]

+
N4(N4 − 1)

2
[f (n1, n + 1) − 2f (n1, n) + f (n1, n − 1)], (21c)

g(n1, n2 − 1) = g(n1, n2) − N4[f (n1, n + 1) − f (n1, n)]

+
N4(N4 − 1)

2
[f (n1, n + 1) − 2f (n1, n) + f (n1, n − 1)], (21d)

g(n1 + 1, n2 + 1) = g(n1, n2 + 1) + N2[f (n + 1, n2 + 1) − f (n1, n2 + 1)]

+
N2(N2 − 1)

2
[f (n + 1, n2 + 1) − 2f (n1, n2 + 1) + f (n − 1, n2 + 1)], (21e)

g(n1 − 1, n2 + 1) = g(n1, n2 + 1) − N2[f (n + 1, n2 + 1) − f (n1, n2 + 1)]

+
N2(N2 − 1)

2
[f (n + 1, n2 + 1) − 2f (n1, n2 + 1) + f (n − 1, n2 + 1)], (21f )

g(n1 + 1, n2 − 1) = g(n1, n2 − 1) + N2[f (n + 1, n2 − 1) − f (n1, n2 − 1)]

+
N2(N2 − 1)

2
[f (n + 1, n2 − 1) − 2f (n1, n2 − 1) + f (n − 1, n2 − 1)],

(21g)

g(n1 − 1, n2 − 1) = g(n1, n2 − 1) − N2[f (n + 1, n2 − 1) − f (n1, n2 − 1)]

+
N2(N2 − 1)

2
[f (n + 1, n2 − 1) − 2f (n1, n2 − 1) + f (n − 1, n2 − 1)].

(21h)
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In this case, the eight variables on the lhs of equations (21) are expressed in terms
of the nine variables f (n) = f (n, n), f (n ± 1) = f (n ± 1, n ± 1), f (n1, n ± 1) =
f (n, n ± 1), f (n ± 1, n2) = f (n ± 1, n), f (n − 1, n + 1) and f (n + 1, n − 1) appearing
on the rhs of equations (21). One can invert the system (21) and get

f (n + 1) = g(n1, n2) +
1

2N2
[g(n1 + 1, n2) − g(n1 − 1, n2)]

+
1

2N4
[g(n1 − 1, n2) − 2g(n1, n2) + g(n1 + 1, n2)]

+
1

2N4
[g(n1, n2 + 1) − g(n1, n2 − 1)] + o

(
1

N6

)
. (22)

In the continuous limit, when n → ∞ and h → 0 in such a way that nh → x, equation (22)
will give equation (20).

Let us write here just the final result when f (n) = g(n1, n3) is of order 4 in the variable
n1 and of order 2 in n3. We have

f (n + 1) = g(n1, n3) − 1

12N2
[g(n1 + 2, n3) − 8g(n1 + 1, n3)

+ 8g(n1 − 1, n3) − g(n1 − 2, n3)] +
1

24N4
[g(n1 + 2, n3) − 16g(n1 + 1, n3)

+ 30g(n1, n3) − 16g(n1 − 1, n3) + g(n1 − 2, n3)] +
1

2N6
[g(n1, n3 + 1)

− g(n1, n3 − 1)] − 1

12N6
[g(n1 + 2, n3) − 2g(n1 + 1, n3)

+ 2g(n1 − 1, n3) − g(n1 − 2, n3)] + o

(
1

N8

)
. (23)

In the continuous limit, when n → ∞ and h → 0 in such a way that nh → x, equation (23)
will give

f,x(x) = εg,x1(x1, x3) + ε3g,x3(x1, x3). (24)

One can introduce constant parameters in the definition of n1, n2 or n3 in terms of n. For
example, we can write n1 = nM1

N2 and n2 = nM2
N4 . M1 and M2 cannot be completely arbitrary

as n1, n2, n and N are integers. In such a case equation (19) reads

f (n + 1) = g(n1, n2) +
M1

2N2
[g(n1 + 1, n2) − g(n1 − 1, n2)]

+
M2

N4
[g(n1, n2 + 1) − g(n1, n2)] +

M2
1

2N4
{[g(n1 − 1, n2)

− 2g(n1, n2) + g(n1 + 1, n2)]} + o

(
1

N6

)
. (25)

In section 3, we will apply these results to a partial difference equation. For the sake of
simplicity from now on we write the independent variables as indices. For completeness, in
the following we present the formulae for two independent lattices, n and m, and a function
defined on them fn,m. As the two lattices are independent, the formulae presented above apply
independently on each of the lattice variables. So, for example, fn+1,m when the function f is
a slowly varying function of order 2 of a lattice variable n1 (see equation (13)) will read

fn+1,m = gn1,m +
1

2N2

[
gn1+1,m − gn1−1,m

]
+

1

2N4

[
gn1+1,m − 2gn1,m + gn1−1,m

]
+ o

(
1

N6

)
,

(26)
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and similarly for a variation with respect to m alone or to the case when we will introduce
multiple lattices associated with n or m, when formulae (19), (22), (23) are to be taken into
account. A slightly less obvious situation appears when we consider fn+1,m+1, as new terms
will appear. We consider here just the case we will need later, when n1 = M1n

N2 ,m1 = M2m
N2 and

m2 = n
N4 . If f is a slow varying function of first order in m2 and of second order in both n1

and m1, fn+1,m+1 reads

fn+1,m+1 = gn1,m1,m2 +
M1

2N2

[
gn1+1,m1,m2 − gn1−1,m1,m2

]

+
M2

2N2

[
gn1,m1+1,m2 − gn1,m1−1,m2

]

+
M2

1

2N4

[
gn1+1,m1,m2 + gn1−1,m1,m2 − 2gn1,m1,m2

]

+
M2

2

2N4

[
gn1,m1+1,m2 + gn1,m1−1,m2 − 2gn1,m1,m2

]

+
M1M2

4N4

[
gn1+1,m1+1,m2 + gn1−1,m1−1,m2 − gn1+1,m1−1,m2 − gn1−1,m1+1,m2

]

+
1

N4

[
gn1,m1,m2+1 − gn1,m1,m2

]
+ o

(
1

N6

)
. (27)

As one can see in its fifth and sixth lines, equation (27) contains extra terms involving variations
in both the m1 and the n1 lattices.

3. Reduction of the lattice potential KdV

In this section, we apply the results presented in section 2 to the case of the lattice potential
KdV (1). By expanding the left-hand side of equation (1), one separates the linear and
nonlinear parts

(p − q)(un+1,m+1 − un,m) + (p + q)(un+1,m − un,m+1) = (un+1,m − un,m+1)(un+1,m+1 − un,m).

(28)

This equation involves just four points which lie on two orthogonal infinite lattices and are the
vertices of an elementary square.

Let us solve the linear equation

F = (p − q)(un+1,m+1 − un,m) + (p + q)(un+1,m − un,m+1) = 0. (29)

The discrete Fourier transform [5] will reduce the solution of the partial difference equation
(P�E) (29) to that of an ordinary difference equation. Defining

un,m = 1

2π i

∮
C1

vm(z)zn−1 dz, (30)

vm(z) =
+∞∑

n=−∞
un,mz−n, (31)

where C1 is the unit circle, we reduce equation (29) to the following first-order equation for
vm(z)

vm+1(z)[(p − q)z − (p + q)] − vm(z)[(p − q) − z(p + q)] = 0, (32)

whose solution is given by

vm(z) =
[
(p − q) − z(p + q)

(p − q)z − (p + q)

]m

v0(z). (33)
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Given any initial condition un,0, the general solution of (29) is given by

un,m = 1

2π i

+∞∑
j=−∞

uj,0

∮
C1

[
(p − q) − z(p + q)

(p − q)z − (p + q)

]m

zn−j−1 dz. (34)

Equations (30), (34) can be rewritten in a more natural way (from the continuous point of
view) by defining

z = eik; � = e−iω =
[
(p − q) − z(p + q)

(p − q)z − (p + q)

]
. (35)

In such a case, equation (30) is just the standard Fourier transform and the solution (34) is just
written as a superposition of linear waves. The dispersion relation for these linear waves is
given by ω = ω(k) and reads

ω = −2 arctan

[
p

q
tan

(
k

2

)]
. (36)

In the following, however, to avoid too complicated formulae we express the solutions of the
linear equation in terms of z and �.

The lpKdV is an integrable equation of the same category of the KdV [3] as it possesses a
Lax pair [15] which can be obtained by requiring that the model be consistent around a cube.
So, as from KdV we get by multiple-scale reduction the NLS [21], the same we may expect
here [2]. To get an integrable discrete equation, we expect a resulting discrete equation which
is somehow symmetric. At least when ht → 0 with t = mht , the differential–difference
equation we obtain must be symmetric in terms of the inversion of nj [20], i.e. if it depends
on nj+k it will depend in the same way on nj−k . So, in the transformation of the discrete
dependent variables, we prefer to use formulae (13) and (17) for the space variables, while
considering the lowest possible approximation for the discrete time variable (8). So, in the
multiple-scale expansion, as we do not need to have the discrete time variable appearing in a
symmetric way, we use equation (19).

Taking into account equation (34), we consider a wave solution of equation (29) given by

En,m = ei(kn−ω(k)m) = zn�m. (37)

Equation (37) solves F = 0 if ω is given by equation (36). Then we look for solutions of
equation (28) written as a combination of modulated waves

un,m =
+∞∑
s=0

εβs ψ(s)
n1,m1,m2

(En,m)s +
+∞∑
s=1

εβs ψ̄ (s)
n1,m1,m2

(Ēn,m)s, (38)

where ψ(s)
n1,m1,m2

are slowly varying functions on the lattice and ε = N−2. By ā we mean
the complex conjugate of a so that, for example, Ēn,m = e−i(kn−ω(k)m) = (En,m)−1, and the
positive numbers βs are such that β0 = 1 and βj = j . The discrete slow varying variables
n1,m1 and m2 are defined in terms of n and m by

n = n1
N2

M1
, m = m1

N2

M2
, m = m2N

4. (39)

Equation (39) is meaningful if M1 and M2 are divisors of N2.
Introducing the expansion (39) into equation (28) and picking out the coefficients of the

various harmonics (En,m)s we get a set of determining equations. For s = 1, having defined
ψ(1) = ψ , we get at lowest order in ε

ψn1,m1,m2 [(q − p)(1 − z�) − (p + q)(� − z)] = 0, (40)
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which is identically solved by the dispersion relation (36). At ε2 we get a linear equation

M2 [(p − q)z� − (p + q)�)]
[
ψn1,m1+1,m2 − ψn1,m1−1,m2

]
+ M1 [(p − q)z� + (p + q)z]

[
ψn1+1,m1,m2 − ψn1−1,m1,m2

] = 0 (41)

whose solution is given by choosing

ψn1,m1,m2 = φn2,m2 , (42)

where

n2 = n1 − m1. (43)

The solution (42) is obtained by choosing the integers M1 and M2 as

M1 = S �[(p − q)z − (p + q)],

M2 = S z[(p − q)� + (p + q)], (44)

where S is an arbitrary complex constant. Let us note that also n2 = n1 + m1 solves
equation (41) by an appropriate choice of M1 and M2. Moreover, M2

M1
= ω,k , the group

velocity. As M1 and M2 are integers, not all values of k are admissible as ω,k must be a
rational number.

At ε3 we get a nonlinear equation for φn2,m2 which depends on ψ(2)
n2,m2

and ψ
(0)
n2+1,m2

−
ψ

(0)
n2−1,m2

c1
(
φn2,m2+1 − φn2,m2

)
+ c2

(
φn2+2,m2 + φn2−2,m2 − 2φn2,m2

)
+ c3

(
φn2+1,m2 + φn2−1,m2 − 2φn2,m2

)
+ c4φn2,m2

(
ψ

(0)
n2+1,m2

− ψ
(0)
n2−1,m2

)
+ c5ψ

(2)
n2,m2

φ̄n2,m2 = 0, (45)

where

c1 = [(p − q) − z(p + q)],

c2 = S2z2pq(p − q)

[
(p + q)z − (p − q)

(p + q) − z(p − q)

]2

,

c3 = −2S2zpq(p − q)
[z(p + q) − (p − q)][(z2 + 1)(p + q) − 2z(p − q)]

[(p + q) − z(p − q)]2
,

c4 = −qS2(p2 − q2)(z2 − 1)

[
z + 1

(p + q) − z(p − q)

]2

,

c5 = −2
q(p2 − q2)

z[(p + q)z − (p − q)]

[
(z + 1)(z2 − 1)

(p + q) − z(p − q)

]2

.

The lowest order equations for the harmonics s = 0 and s = 2 appear at ε2 and give

ψ
(0)
n2+1,m2

− ψ
(0)
n2−1,m2

= 2
∣∣φn2,m2

∣∣2 (1 + z)2

Spz[(p + q)z − (p − q)]
, (46)

ψ(2)
n2,m2

= (
φn2,m2

)2 1 + z

2p(1 − z)
. (47)

Taking these results into account the nonlinear equation (45) for φn2,m2 reads

i
[
φn2,m2+1 − φn2,m2

] = C1(k)
[
φn2+2,m2 + φn2−2,m2 − 2φn2,m2

]
+ C2(k)

[
φn2+1,m2 + φn2−1,m2 − 2φn2,m2

]
+ C3(k)φn2,m2

∣∣φn2,m2

∣∣2
, (48)

where C3(k) is a real coefficient given by

C3(k) = 2

{
sin(k)[1 + cos(k)]2q(p2 − q2)

p[(p2 − q2) cos(k) − (p2 + q2)]2

}
. (49)
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The coefficients C1(k) and C2(k) are complex and depend on S. They are

C1(k) = iqpz2S2(p − q)

{
[z(p + q) − (p − q)]

[(p − q)z − (p + q)]2

}
, (50)

C2(k) = −2iqpzS2(p − q)

{
[(p + q)(1 + z2) − 2(p − q)z]

[(p − q)z − (p + q)]2

}
. (51)

Equation (48) is a completely discrete and local NLS equation depending on the first and
second neighbouring lattice points. Different from the Ablowitz and Ladik [1] discrete NLS,
the nonlinear term is completely local.

4. Discussion of the results and conclusive remarks

The choice of the order of slowliness is essential in defining the points involved in the resulting
equation. In our calculation of the multiple-scale reduction of the lpKdV, we choose to use
the minimum number of points in the various lattices introduced. Here, we started from just
four points and got a scheme which involves six points. Moreover, while the starting initial
problem is defined on a staircase, equation (48) is defined on a line. By choosing slow varying
functions of higher order, essential for example to get the higher order terms in the expansion
necessary to go beyond the NLS [4] even at the lowest order we would get a nonlinear
difference equation involving many more lattice points. This seems to be a peculiarity of the
multiple-scale expansion on the lattice.

This work opens a research field of great interest both for the possible mathematical
results and for the physical applications. To show this, we present in the following a detailed
list of open problems and remarks on which work is in progress.

(1) Prove the integrability of equation (48) by reducing the Lax pair of the lpKdV or by
constructing its generalized symmetries.

(2) Equation (48) is invariant with respect to time translation. One can thus reduce it with
respect to this Lie point symmetry and get[
φn2+2 + φn2−2 − 2φn2

]
+ d1

[
φn2+1 + φn2−1 − 2φn2

]
+ d2φn2

∣∣φn2

∣∣2 = 0. (52)

One would like to show that equation (52) possesses the Painlevé property. On the lattice
this is given by the singularity confinement [7, 16] or algebraic entropy [9].

(3) Equation (48) has a natural semi-continuous limit when m2 → ∞ as H2 → 0 in such
a way that t2 = m2H2 is finite. In such a case equation (48) reduces to the nonlinear
differential–difference equation

i
dφn2

dt2
= e1

[
φn2+2 + φn2−2 − 2φn2

]
+ e2

[
φn2+1 + φn2−1 − 2φn2

]
+ e3φn2

∣∣φn2

∣∣2
. (53)

If equation (48) is integrable then equation (53) should be an integrable multiple-scale
reduction for differential–difference equations [11–13, 17] like the Toda lattice.

(4) Do the multiple-scale reduction of other integrable lattice equations like the time discrete
Toda lattice, the lattice mKdV or the discrete sine–Gordon equation and see what one
gets. One could obtain equation (48) but, maybe some other integrable lattice NLS-like
equation can be obtained.

(5) Do the multiple-scale reduction of the discrete Burgers equation

bn,m+1 = bn−1,m[1 + bn,mbn+1,m + αbn,m]

1 + bn,mbn−1,m + αbn−1,m

(54)

and get a discrete Eckhaus equation [2].
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(6) Apply the reduction technique to some non-integrable equation of physical interest, like
for example those obtained in the case of discrete phenomena in liquid crystals [6] and
obtain approximate theoretical solutions of the physical result.
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discreti: simmetrie ed integrabilitá and Simmetria e riduzione di equazioni differenziali di
interesse fisico-matematico of GNFM–INdAM. The author acknowledges fruitful discussions
with F Calogero, R Hernandez Heredero, J Hietarinta, O Ragnisco, M A Rodriguez and
P M Santini.

References

[1] Ablowitz M J and Ladik J F 1976 A nonlinear difference scheme and inverse scattering Stud. Appl. Math. 55
213–29

[2] Calogero F 1991 What is Integrability ed V E Zakharov (Berlin: Springer) p 161
Calogero F and Eckhaus W 1987 Necessary conditions for integrability of nonlinear PDES Inverse Problems

3 L27–32
[3] Calogero F and Degasperis A 1982 Spectral Transform and Solitons: Tools to Solve and Investigate Nonlinear

Evolution Equations. I (Amsterdam: North-Holland)
[4] Degasperis A, Manakov S V and Santini P M 1997 Multiple-scale perturbation beyond the nonlinear Schrödinger

equation I Physica D 100 187–211
[5] Elaydi S N 1999 An Introduction to Difference Equations (New York: Springer)
[6] Fratalocchi A, Assanto G, Brzdakiewicz K A and Karpierz M A 2005 Discrete light propagation and self-trapping

in liquid crystals Opt. Exp. 13 1808–15
[7] Grammaticos B, Nijhoff F W and Ramani A 1998 Discrete Painlevé equations The Painlevé Property, One
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